

Modeling Conflicts of Multiple Independent Alerting Systems

Lixia Song

James K. Kuchar

Massachusetts Institute of Technology

Why Implement Multiple Alerting Systems

- Existing systems intended for specific roles, new alerting have been introduced to provide additional protection in new applications (TCAS/AILS)
- Different timescales

GPWS vs. EGPWS

TCAS vs. ATC conflict probe

 Due to cost and certification issues, the new systems have been introduced independently rather than modifying and enhancing existing system (GPWS/EGPWS)

Multiple Alerting Systems

Conflict

- Dissonance between human and automation
 - □ Difference between an alerting system's decision and a human internal model of a threat situation
 - Pritchett and Hansman explored the concepts
- Dissonance between two or more alerting systems
 - ☐ Each system uses different set of sensors
 - □ Different logic for
 - ◆ Alert stage
 - ◆ Resolution guidance
 - □ Different displays

Undesirable Effects of

•	Human	vs. Auto	mation
_	Human	VO. AULU	ınalıdı

- ☐ Increased delay in taking action
- ☐ Failure to take action at all
- Implementing an action contrary to the automation command

Automation vs. Automation

- □ Same as above
- Overloading or confusing the human

Long-term

Distrust of automation in the future

Methods to Mitigate Alert Conflicts

•	To date, the conflict issue has been largely managed through prioritization
	Inhibit one of the alertsProblem when both alerts are valid

- Procedurally prevent conflict (aircraft flight path restriction)
 - Modify air traffic control procedures to reduce the likelihood of a simultaneous TCAS alert and parallel traffic alert
- Training the pilot
 - ☐ Training may fall short (two accidents of Boeing B757 aircraft in 1996)
- Modify system design to reduce impact/frequency of conflicts
 - Need a more formal method to identify the potential of dissonance and develop the mitigation method

High Level Overview of Types

Dissonance may occur whenever a given state maps into two different alert stages or two different resolution commands or when the time-derivatives of these mappings differ

State-space Model for Multiple Alerting Systems

Alerting Systems Conflict Types

Static Conflict and Dynamic Conflict

		Example Dissonance	
Information Element		System 1	System 2
Alert Stage	system alert stage	no threat	warning
	hazard	aircraft A is a	aircraft B is a
	alert stage	threat	threat
	dimension	turn	climb
Resolution	polarity	climb	descend
	magnitude	turn 5Þ	turn 30Þ

Human Factor Issues

- Work to date has focused on mathematical identification of information from each system disagrees. Also critical is determining:
 - ☐ How much difference between the information provided to the human operator may result in dissonance
 - ☐ How rapidly systems must change for dynamic dissonance to occur
 - ☐ Human operator's internal model of the threat situation

Preliminary Human Factor Study

One-Dimensional Example(1)

Own Aircraft(trail) has two systems:

System 1: Simple proximity logic: command accelerate if range > threshold (r)

System 2: TCAS-like logic:command decelerate if time to impact < threshold (r, \dot{r})

One-Dimensional Example(2) ---system logic

System 2

One-Dimensional Example(3) ----static conflict conditions

One-Dimensional Example(4) ----possible dynamic conflict

Restrictions on the Model

- Hard to describe and analyze complicated logic
 - ☐ Assumes/Requires functional relationship between states and alert
- Hard to present results and describe behavior
 - Multidimensional case
 - Identification of conflict sets depends on human factors issues

Petri Nets ---A Formal Method

- To express the system logic
 - □ Capture temporal behavior
 - Better represents modes/stages
- To find the conflict conditions between system logic
- To find controls to avoid dynamic conflict
- To avoid situations leading to dynamic conflict

An Example of Multiple Alerting Systems Model Using Petri Net

Concept of Safety in Petri Nets

- A process is "unsafe" when it reaches certain undesired states
- The safety verification problem is determining whether a sequence of control may lead the system from any initial condition to any potentially unsafe condition within certain time
- For multiple alerting systems, use petri net to find situations leading to conflict and design optimal control to avoid entering the conflict region within certain time
- Plan to apply PNs to example aviation problem(e.g. TCAS & Airborne Conflict Management)